Hosted Services for Advanced V&V Technologies:

An Approach to Achieving Adoption without the Woes of Usage'

Position Paper for ACSE 2003

Lawrence Z. Markosian
QSS Group, Inc.
lzmarkosian @email.arc.nasa.gov

Owen O’Malley
QSS Group, Inc.
owen @email.arc.nasa.gov

John Penix
NASA Ames Research Center
John.J.Penix @nasa.gov

William A. Brew

Abstract

Attempts to achieve widespread use of software
verification tools have been notably unsuccessful. Even
“straightforward”, classic, and potentially effective
verification tools such as lint-like tools face limits on
their acceptance. These limits are imposed by the
expertise required for applying the tools and interpreting
the results, the high false positive rate of many
verification tools, and the need to integrate the tools into
development environments. The barriers are even greater
for more complex advanced technologies such as model
checking.

Web-hosted services for advanced verification
technologies may mitigate these problems by centralizing
tool expertise.

The possible benefits of this approach include
eliminating the need for software developer expertise in
tool application and results filtering, and improving
integration with other development tools.

1. Introduction

Software engineering tool developers face numerous
obstacles in getting their tools adopted. Some of these
obstacles are listed in the Call for Papers for this
Workshop. Others include the cost of the infrastructure for
maintaining and applying the tools, and the difficulty of
interpreting and filtering the results. Integration with
other tools pose additional barriers. The approaches
suggested in the CFP represent ways to address these
problems.

Our focus in this paper is on adoption of verification
tools, specifically, program analysis and simulation tools
such as static analyzers and model checkers. These tools
are likely to require significant expertise in their use, for
reasons that we discuss in the next section. In addition,
these tools generally require a greater effort to integrate
than “front end” tools such as design tools and compilers.
Therefore, for verification tools, a more radical approach
may be needed to ensure adoption.

! The research on model checking described in this report was performed at NASA Ames Research Center’s Automated Software Engineering group and
is funded by NASA’s Engineering for Complex Systems program. The experience reported regarding other technologies and tools is based on the
authors’ professional experience developing and applying them in a variety of organizations.

Hosted application service providers may provide an
effective way, in appropriate markets, to dramatically
lower these acceptance barriers.

2. The problem

The Intelligent Software Engineering Tools team at
NASA Ames Research Center (ARC) develops advanced
verification tools based on source code model checking
technology[1], an ongoing research area in the Automated
Software Engineering group at ARC. Our target languages
are Java, C and C++. This position paper is based in part
on our current work and in part on our previous
experience at NASA and elsewhere building or applying a
variety of commercial verification tools. These tools
include PolySpace[2], Flexelint[3], and Y2K defect
detection/ remediation tools as well as research prototypes
such as Java PathFinder[1] and ESC/Java[4]. Effective
use of many of these tools faces similar problems.

In our experience, specialized expertise is required for
effective use and adoption of verification tools.
Integration issues also impede adoption.

2.1 Kinds of knowledge required for effective use
of verification tools

Effective use of verification tools includes detection of
real defects; a low false-positive rate; the ability to triage
reported defects; and a high confidence level in the
results. Effective use of model checking tools requires a
mental model of their operation to interpret the output,
tune the model checker’s operation, and identify the root
cause of defects that it reports. This knowledge is largely
application-independent.

In addition to a mental model of tool operation,
effective use for our target languages, C, C++ and Java,
may require expert knowledge of the semantics of
language operators in order to evaluate a defect report. In
our experience, C/C++ programmers may not have the
level of understanding of language semantics necessary to
interpret tool output. As is the case with tool expertise,
this knowledge is application-independent.

Effective use of verification tools may also require
application-specific knowledge. Static analyzers may be
unable to conclude that an operation may produce an
exception, because the range of possible values of
variables cannot be derived from the source code. This
knowledge is often provided in the form of formal
specifications or design information.

All of these considerations are prior to root cause
analysis, which imposes further demands on the user, if
the defect reports are to be actionable. Once the defect is
well-understood, confirmed as real, with high confidence,

then application-specific knowledge may be important in
the remediation task.

Our experience with defect detection tools based on
static analysis suggests that some of these problem exist
even for lint-like tools, which have been available for 20+
years. These tools have such a high false positive rate that
programmers are reluctant to apply them: they cannot
filter the output efficiently, nor are they motivated to
spend time on what they view as “busy work”.

2.2 Integration of verification tools

Effective use of verification tools also requires that the
tools be well-integrated into the development
environment. Static analysis tools can, in principle, be run
at compile or build time. Thus they hold forth the promise
of early defect detection if they are well integrated into the
development process.

Verification tools generally require a greater effort to
integrate than “front end” tools such as design tools and
compilers, since the verification tools must report defects
in a way that supports in-the-loop evaluation and
remediation or other action.

Tools that have a high false positive rate, if they are to
be integrated at all, require a well-defined filtering process
—some combination of automated post-processing and
human filtering. Our experience is that developing an
efficient filtering process requires extensive experience
with the tool and its use in a particular development
environment; the distillation of this experience must be
retained as enterprise knowledge in a training system
because of the high turnover rate of reviewer personnel.

Advanced verification tools themselves are likely to be
“niche market” tools, since their range of applicability is
limited, and hence the resources available for integration
and maintenance will be limited compared to, for
example, the resources available for integrating and
maintaining a new compiler.

3. Hosted Verification Services

We have argued that effective use of verification tools
requires three kinds of knowledge: a mental model of the
tool’s operation; knowledge of the semantics of the target
language; and application-specific knowledge. To the
degree that the first two kinds of knowledge dominate, it
makes sense to centralize that expertise and even to hide it
from users. One way to do this is to provide web-hosted
verification services.

Usage scenario. In one scenario for hosted
verification services, a developer checks her successfully-
compiled source files into the host server’s configuration
management system (CMS). The nightly build is run on
the development team’s network, which accesses the files

from the host’s CMS. The build transcript is written to the
CMS server. Following the build, a configuration analysis
tool, which is resident on a server at the hosting service,
analyzes the build transcript to determine what files need
to be analyzed and how (what compiler and compilation
options were used, etc.) Some of the options specific to
the verifier have been preset by the service provider’s tool
experts based on prior customer input about the
application or about the current build. These options may
include decisions about what defects are of interest to the
customer, how much explanation of the defects is to be
provided, and the highest priority modules for
verification.

The verification tools use the configuration analysis
data to initialize the verification options. Then they
proceed to analyze the application. Tool operation is
monitored by the service provider and human
interventions are made as necessary—for example, to
make tradeoffs between runtime and completeness of the
analysis, or to focus on specific execution paths. The
verification tools may need to be run repeatedly, with
different settings, to obtain the desired results.
Verification output is then filtered by an automated
filtering system and may be presented to human reviewers
for final filtering. The human-filtered output is directed to
other facilities that are provided at the hosting site, such as
an issue tracking system and test case generator. Ideally
the data are available to the user when she logs on in the
morning.

Commercial models. The model for this scenario is
not far from existing commercial application service
providers (ASPs) of software development tools and
services.

For example, DevX and Merant provide hosted issue
management tools and services. VA Software and
Collabnet provide tools and services for hosted
configuration management and collaborative develop-
ment. SoftGear focuses on testing. Other organizations
provide source code inspection services. The degree of
user access to the “tools”, and what capabilities are
provided by ASPs, varies. In some cases the user directly
accesses a tool (such as a configuration management
system) using a browser interface, and the services include
maintenance of the tools and the platform. In other cases
the user may simply make submissions (for example, an
application to be tested) and later accesses a database for
the results—the ASP provides a service based on a
combination of tools and human expertise.

Lessons from Y2K verification. Our experience with
the Y2K problem suggests the effectiveness of a service-
based approach to verification. Solving the Y2K problem
for Cobol required extensive program analysis, as well as
the ability to understand specific Y2K errors and
remediate them systematically. This was beyond the
capability of most Cobol programmers, particularly given

the time constraints and the massive volume of source
code to be examined. Advanced program analysis tools
based on alias analysis and program slicing largely
automated the analysis, but required a good mental model
on the part of the user in order to tune their operation and
interpret the results. Our experience was that training
Cobol programmers in the required concepts, such as
parsing, alias analysis, reaching definitions, evidence and
confidence levels, built-in heuristics, and remediation
strategies was broadly ineffective. Intensive process and
tool training in a “factory” enabled a high throughput
whether the goal was independent verification or error
detection and remediation.

Application-specific =~ knowledge was largely
unnecessary”: the most important consideration was
obtaining a complete, consistent set of source and copy
books (include files).

4. Success and Risk Factors

We are not advocating hosted verification as a
panacea. We have already indicated the basic precondition
for hosted verification services—dominance of the
importance of tool knowledge over application
knowledge, or the superior ability of the tool to acquire
application knowledge. Specific additional factors within
NASA enhance the prospects for hosted verification
services there. There are risks also, both within NASA
and in a broader context.

Intellectual property & security issues. Commer-
cially, intellectual property issues coupled with security
concerns produce a reluctance in some markets to allow
source code offsite. This consideration is largely absent
within NASA; there are security issues (such as ITAR) but
these are addressable through existing procedures. And, as
we discuss below, NASA already has an internal software
verification facility.

Need for verification. In addition, there is a recog-
nition within NASA that software complexity, particularly
for autonomous vehicles, is increasing rapidly, and that
advanced software V&V are enabling technologies for
autonomous space exploration. NASA ARC has for years
been conducting research in software V&V as well as
other approaches for reducing defects in autonomous
applications. ~~ ARC does research and some tool
development; it does not provide verification services.

However, NASA does have an organization dedicated
to V&V, the Independent Verification and Validation

* More accurately, Y2K defect analysis and remediation
required extensive application knowledge, but this never
favored the application expert: the toolset became the
application expert in the course of analyzing the
application.

Facility. Its charter includes “identifying system and
software risks to improve software quality and safety”.
We view the IV&V Facility as is a possible natural entry
point for hosting verification services within NASA.

Support for software development process
improvement. There is also an increasing recognition
within NASA that detailed data and metrics should be
collected on high-assurance software engineering projects.
A hosted development environment, with specialized
V&V tools, provides a platform for obtaining such data
and evaluating the effectiveness of the development
process, including the individual V&V tools. It offers the
possibility of obtaining fine-grained enough data on
individual V&V tools that NASA can model the return on
investment of each tool when used at various points in the
development lifecycle and feed this data into risk
assessment tools such as [6].

Integration with other tools. The same environment
that hosts V&V services should also host other
development tools—at the very least, CMS and issue
tracking tools. This does not completely address the
integration issues mentioned earlier, since builds and
testing, for example, are usually not conducted in the
hosting environment, and there is a wide range of
development environments. However, hosting CMS and
issue tracking may provide a synergistic environment—
the CMS can provide a complete, consistent configuration
for verification; and verification output can be directed to
the issue tracking system and possibly the test
environment. An integration risk is that there is a large
range of development environments, and it may be
difficult to integrate closely with the build process.

Turn-around time. Integration into the development
environment also suggests that the verification results are
available quickly enough to be actionable before the next
build. Human intervention in the verification process,
which we have argued is necessary to apply verification
tools and filter the results, may preclude a rapid enough
response—for example, when builds are done on a daily
basis. One strategy for mitigating this risk is to provide
several levels of verification, where the “deeper” (and
more time-consuming) verification levels are reserved for
high-assurance applications that are more tolerant of turn-
around time. Another strategy is to optimize the
verification insertion points in the customer’s
development cycle—for example, with respect to
milestones such as start of integration testing,
certification, alpha and beta release, etc. Incremental
verification should also improve turnaround time.

One of our research goals is to determine the right
lifecycle insertion points for verification tools, especially
when several verification and validation tools are used
together.

Incremental verification. A related risk is inability to
support “incremental” verification on successive builds.

The human effort required for verification should be
approximately proportional to the amount of “new” code.
Certainly this is the customer’s perception. A combination
of engineering and research may be needed to address this
for large applications with frequent builds.

5. Conclusion

We need to understand how the verification tools we
are developing at ARC can overcome barriers to
deployment within NASA, and how they are best
integrated into the development process.

Web-hosted verification services may provide an
opportunity for verification technology to gain acceptance
in NASA and elsewhere. One of the barriers to the use of
verification tools is the expertise required to apply them
effectively, which dominates the application expertise
required on the part of the user.

Benefits of web-hosted verification services may also
include better integration into the development lifecycle;
better integration with other software development tools;
and the ability to obtain fine-grained performance data for
evaluating the effectiveness of particular tools in various
contexts.

Risks include difficulty of providing application-
specific knowledge to assist the tool; inability of the
hosting site to model the application development site;
inadequate turn-around time; and the inability to support
incremental verification of large applications. In the
commercial environment, intellectual property and
security concerns may limit acceptance.

References

[1] W. Visser, K. Havelund, G. Brat, S. Park. “Model
Checking Programs”, Proceedings of the 15th
International Conference on Automated Software
Engineering (ASE), Grenoble, France, September 2000.
[2] PolySpace is a trademark of PolySpace, Inc.
http://www.polyspace.com

[3] Flexelint is a trademark of Gimpel Software, Inc.
http://www.gimpel.com/

[4] http://research.compaq.com/SRC/esc/

[5] CodeWizard is a trademark of Parasoft, Inc.
http://www.parasoft.com

[6] Raffo, D., and Kellner, M. 1., “Predicting the Impact
of Potential Process Changes: A Quantitative Approach to
Process Modeling,” Elements of Software Process
Assessment and Improvement, IEEE Computer Society
Press, 1999

[7] Cousot, P. “Abstract Interpretation: Achievements and
Perspectives.”
http://www.polyspace.com/docs/Abstract_Interpretation_
P_Cousot.pdf

